Teachers

NCTM Nashville – Twitter, Modeling, and Desmos, Oh, My!

OK, so my timing on this is not great.  This was actually written back in December (still a little tardy) and then the holidays ran over me.  Blah, blah, blah.  Nevertheless, everything below is still relevant.

Having attended and presented at conferences before, I have to say some conferences are good, and some not so good.  NCTM Nashville 2015 was, in my opinion, the best I have attended – hands down!

Here’s why:

On Wednesday evening, in the opening session, Graham Fletcher, Robert Kaplinsky, Laila Nur, Andrew Stadel and Cathy Yenca set the tone for the conference.  They spoke about their personal experiences of improving mathematics teaching and what they use to continuously improve their practice, they all spoke about how accessible and personalized PL for math teachers’ needs can be with a Math Blogs, Twitter, the #MTBoS (Math Twitter Blog-o-Sphere) that links them all together, and Web 2.0 tools that are not only changing the ways we think about teaching mathematics, but also the ways students engage in mathematics in their classrooms.  One word:  Powerful.  And as I said before, it set the tone for the rest of the conference.

The rest of the sessions, at least the sessions I attended, all connected to the opening session.  In the Desmos sessions I attended with Michael Fenton and Christopher Danielson, the presenters were able to take novices through the simplicity and beauty of this free graphing calculator (which is really much more – see my post on this here) and those of us who are just above the novices had plenty to learn as well.  I even had a Desmos special tutoring session from Cathy Yenca and Julie Reulbach in the back of one of these sessions.

The twitter sessions I attended were always full and the session facilitators, as well as many attendees, lent a hand to those who wanted to get on board “this Twitter math train.” In addition, LOTS of people stopped by the MTBoS booth and were given some “small group” lessons on how to use Twitter, who to follow, and were given some general tips to make the whole experience low stress!  Michael Fenton and John Mahlstedt were the facilitators of the Twitter sessions I attended.  In each of these sessions, attendees were eager to learn more about Twitter and how it could help them become better math teachers.  Even some not so eager people were asking questions near the end of these sessions!

The rest of the sessions I attended (I even co-presented one) had to do with modeling with mathematics – SMP 4.  These sessions were probably the most valuable to me for two reasons:

  1. We got to really dig in to some math and have some great mathematical discussions!
  2. I got to experience more modeling in secondary mathematics which is great since I have just rejoined the secondary math world.

Ashli Black‘s session:  Selecting and Using Tasks to Develop MP.4: Model with Mathematics was all about investigating characteristics of modeling tasks and working with pitfalls.  I recommend following Ashli on twitter: @Mythagon.  She really knows what modeling with mathematics should look like in the secondary math world, she’s a great presenter, and I’m thankful that she took the time to fill out the speaker form last year.  

Michael Fenton‘s session on modeling provided a one-two punch – Modeling WITH Desmos!  This was an incredible session.  Michael’s presentation combining Desmos with mathetmatical modeling was.  I was making sense of mathematics through the models created.  I wish I had learned math this way, initially! While I can’t go back in time to learn this way for the first time, I can make sure that the students in my district have the opportunity.  And it’s one of my goals for this year.

Andrew Stadel’s session: Model with Mathematics using Problem Solving Tasks.  I have to admit, I’ve been using Andrew’s resources from his blog for a few years, but it was a real treat attending his session.  He engaged us in a three-act task: Swing Wraps.  This problem solving task engaged us in mathematical arguments, modeling, and sense making and a few other SMP’s.  Mr. Stadel also did some modeling of his own through the types of questions he asked to the whole group and small groups, through his guiding of the discussion, and through his commentary about the importance of doing these types of problems.

So, in conclusion, here’s what this all boils down to:

  1. Join Twitter and become a part of the #MTBoS
  2. Allow students to model the problems they solve with mathematics.
  3.  Take a look at Desmos – a long hard look – one that allows you to see it for more than just a free online graphing calculator that students can use to model with mathematics (that should be enough-but there’s oh-so much more to it!)

 

 

Filling Gaps: Buy a Program or Help Teachers Grow?

This post actually started as a rant as I was sitting through meeting after meeting with really nice people trying to sell products to “Fill the Gaps.”  So, if it has a rant-y feeling, just know where I’m coming from.  If no one really likes this, that’s ok.  At least it’s out of my system for now.  You see, when you’re “invited” to attend meetings to raise student achievement, you really need to show up, or who knows what will  happen.  So, in the effort to stand up for teachers and students, I attended all of them.

Man shouting, pulling hair

These were really nice people presenting to us, and they were very passionate about their products.  I even largely agree with several of them on their basic philosophy.

At least one of the people listening with us in the room was sold on many of the ideas before we even started these meetings.  Every slide or picture shown was met with a “That’s good!” or a “That’s really good!”  I think if they showed us a shiny, new penny, this person would have said, “This is what our students need!” with the same reaction!  The pictures of bulletin boards showing concept maps and vocabulary word walls and even students working may be good – or may not.   Really, there’s no way to tell – especially with the picture of the students working.  What were the students saying?  Were they discussing mathematics?  Were they using the vocabulary on the bulletin board?  Were they making connections to the concept maps?  Did they give and receive feedback about their work?  Let’s see some video, so I can see how this is really working.

expresspicture_slider

Again, philosophically I agree with their framework of instruction.   However, the product is not really necessary if the PL these companies are willing to provide is effective.

Now, on to the PL.  Lots of good strategies offered here.  And more pictures of students “engaged.”   My question:  what are the students engaged in?”  Are they engaged in the mathematics or the product?  My initial response to this self-posed question was:  Does it really matter?  The students are working.  After  thinking about this for just a few seconds, though, I can say without a doubt that it does matter!

Engaging students can be tricky.   A passerby, seeing students working silently in their seats, might conclude student engagement in a task.  A passerby, seeing and hearing students discussing a task, may conclude non-engagement in a task as well as lack of classroom management.  Really it’s hard to tell, in either case, whether there was any engagement or what kind of engagement there was.

310914-3x2-940x627

Students in the sixth-grade Harlequin Team from Paris Elementary School work on a math problem. Clockwise, from front left, are Abby Steeves, William Dieterich, Annie Choi, Katerina Crowell, Halie Page and Sebastian Brochu.

So, what does engagement mean?  It depends on what you want.  One of my goals year after year is to engage students in the mathematics they’re studying.  When I first started teaching, I wanted students to just be engaged, no matter what.  As I think back, they were engaged – probably in my educational “performance.”  I was the “fun” teacher that did crazy math lessons.  As I grew professionally, my lesson focus evolved to take the students’ engagement away from me and toward the mathematical content.  So, why is it so important?  If students are engaged in creating the product (creating a poster, making a presentation, etc.)  they may be learning mathematics, but how do we know.  I’ve seen students engaged in creating beautiful products and walk away with little mathematical understanding.  I’ve also seen students engaged in mathematics and creating not so beautiful products, but beautiful understandings and mathematical connections.

So, for all of the professionals in the room thinking this (or any of the other presentations we’ve seen) is the silver bullet. . . It’s not.  The only silver bullet out there that’s going to raise student achievement is teacher PL grounded in  understanding mathematics conceptually and building teachers’ pedagogical understandings and strategies.  If we want high achieving students, we have to help teachers achieve their greatest potential.  No program out there will do that, but if you really want to become a better math teacher, Twitter and the #MTBoS are a great place to start!

Feed the Hungry

Kim, my beautiful bride of 16 ½ years, does not like for me to go grocery shopping on my own.  Recently she had a procedure and when I brought her home to rest I told her I would do the grocery shopping while she rested and no one would have to go the following day.  I was surprised by the fact that she was totally against this idea.  When I asked her why she wanted to go with me, she told me that I get hungry when I shop and buy a bunch of things that are not on the list, so if I was going shopping, she had to go too.  We both ended up going later that day.

While I was a bit hurt by her reasoning, I couldn’t deny it.  She was absolutely right.  I get hungry when I shop.  Lots of food, free samples, items I like on sale, items I’ve never tried not on sale, eye catching packaging. . . I can’ help myself!  And there’s no pattern to my binge shopping.  It just depends on the aisles, the samples, and my cravings. This got me to thinking if everyone does this.  I think so.

So what does this have to do with math teaching?

Bear with me for a bit.  I started a new position in January as Math Teacher on Special Assignment for our district.  My focus is working with middle and high schools.  I’ve taught elementary school, middle school, high school and even some college courses for pre-service teachers, so I’m comfortable working with students at all of these levels.  But when I started I just wasn’t sure how teachers would react to the support I was offering.  Would they want feedback?  Would they want support in their planning?  Would they want a model lesson or to co-teach a lesson?

As I began my work with these teachers I thought about the different kinds of teachers I would encounter as I move from school to school.  I determined, through my interactions with many that teachers seem to fit into one of three categories:

The bottomless pit.  These teachers are hungry all the time!  They ask for feedback, and resources, plan for co-teaching lessons, conference, and do just about anything asked of them.

The nibbler.  These teachers are willing to take a taste, if it’s not too spicy or too bland.  They want new strategies and will try something if they can immediately see how it will fit within their classroom without dropping something that’s “tried and true”.  If they don’t shop in that aisle, they sure won’t take a taste.

The Pepto-Bismols.  These teachers just ate a three course meal with desert and coffee.  The only thing these teachers might want is an antacid.

At first glance, you may choose one to work with over another, but read on.  There’s more to these categories than meets the eye.

  • The bottomless pits are always eating, but they may be eating things that lead them away from the aisles containing the foods for best practice. So it’s my job to make sure to steer these teachers down the aisle for the food that they need and  They may be devouring number talks, but they may be giving speed tests.  They may be sitting down to the table for a 3-Act Task, but they may not be letting their students come to the table of wonder to eat some for themselves.  Tricky stuff here.  We all have our favorite junk foods, but if it’s all we’re eating we are going to have a lot of problems down the line.

Grocery Aisle 1Grocery Aisle 0

  • The nibblers are kind of tricky. They’re a bit pickier about the food they eat.  Most of the time, these teachers just need an alternative, something that might replace what they’re currently eating.  Like the bottomless pits, these teachers could be in the wrong aisle and nibbling just because it’s easier than walking to the next aisle – even when the food over there is SO much better!
  • The Pepto-Bismols are my favorites. These are the ones who think they cannot possibly eat another bite.  They don’t think they’re still hungry, but deep down they are still craving.  They’ve eaten and their plates are still full.  It’s time to steer these teachers toward the pharmacy aisles.  If we can ease the bloating (often caused by lack of standards-based diet), maybe we can slip in a small piece of gourmet math food here and there (Open Middle anyone?).  When they realize their hunger it isn’t long before these teachers are feeding others!

PeptoUltimately, we all need to help our peers in this global math grocery store realize that they are hungry, feed them a little bit of the math goodness, then teach them how to shop for themselves.  You see, all of us are hungry.  Some of us are just walking down the wrong grocery aisles.

I’m still not allowed to grocery shop alone and I’m ok with that – as long as I can be a Mathmart associate, it’s all good!

Mathmart

What Math Teachers Can Learn from Magicians

Yeah, you read that right! I know many of you are now probably thinking about at least one, or likely, a combination of these questions:

  1. What could math teachers possibly have to learn from magicians?
    1. How could there be a connection between these two very different careers?
  2. How would Mike know?

Beginning with the last question probably makes the most sense.  At an early age I developed a fascination with magic, sleight of hand to be specific. Any magician I saw perform – either on TV or live – filled me with wonder. Certainly, some of that wonder was directed toward how the trick or illusion worked, but even beyond that I wondered how I could learn to create this wonder in others. Since I was about 10, I have studied magic and about 7 years later I began performing magic shows at schools, for church groups, and even for a few holiday parties. Once I began my career as a teacher, my role as a magician changed and I focused most of my energy on teaching.  I’ve lived the life of a magician and a teacher and over the last few years, and I’ve begun to notice the similarities between the two.

A magician’s goal is to entertain his or her audience while bringing about a sense of wonder. The means for accomplishing this goal involves the use of any combination of a number of tools including misdirection, psychology, sleight of hand, and story telling. If a magician does his or her job well, the feeling of being tricked doesn’t really enter into a spectator’s mind.  The big idea here is the creation of wonder.

wonder-bwf-quote

That’s the first thing teachers can learn!  It doesn’t take a sleight of hand artist to build a sense of wonder in students.  It takes some creativity and some work and dedication to the idea that all students deserve the chance to wonder and be curious.  All students need that sense of wonder that builds inside them and creates an intellectual need to know and learn.  

This is a great time to be a teacher of mathematics.  Evoking this wonder in students in math classes is extremely accessible because of technology and the online math community know as MTBoS. There are hundreds of math teachers out there at all grade levels and in all areas who have realized the power of making students wonder.  We’ve all been creating 3-Act Tasks and sharing ideas on blogs and webpages, twitter, and youtube or vimeo.  All for free.  They’re there for everyone to use – because we’ve all learned, through using these tasks, that it helps us build student curiosity, engages them in the mathematics and in their own learning, and it helps us build independent, creative mathematical thinkers. Here is more about why you should use 3-Act Tasks.

This brings me to the second thing we can learn from magicians: we can’t do this alone! If we work together, we all benefit!  Most people probably think that magicians are private wizards who lock themselves in a room to practice and never share their secrets.  That’s a bunch of crap! Magicians realized a long time ago that if they work together, they can work more efficiently and become more productive.  Sometimes magicians work on a trick for a while, get stuck and then bring it to some friends they have in the magic community. These other magicians share their ideas, they brainstorm, and try possible solutions.  Then they test the best solution on an audience.  This can be very scary!  Think about it.  This is a trick they’ve never tried – they’ve practiced (A LOT), and maybe even performed in front of small audiences. They must be nervous!  But they go out on stage or wherever their venue is and perform it.  They have to!  It’s how they pay their bills.  Often, some of their friends who helped them are there to provide feedback.  After several performances, and feedback, the script has been adjusted and the magic has been perfected, and it becomes a part of the magician’s repertoire.

Now think about how many math teachers still work. . . alone, in their room, not sharing their ideas.  Magicians realized this was not very productive a long time ago.  Other professions did the same.  It’s time math teachers realize this too!

Take a look at the MTBoS, and see what you think.  Look at some of the sites below and see if you find something you like.  Try some ideas/lessons with your students.  It’ll be a bit scary in the beginning, but soon it’ll become part of your repertoire!  We’re all here to learn from one another because “All of us are smarter than one of us!” ~ Turtle Toms 

What I’ve learned through this whole process is that I get the same feeling of success when I create the sense of wonder in students as I did as a magician creating wonder in an audience. . . but it’s even better with students!