3-Act Tasks

Revisiting 3-Act Tasks

My lessons never stay the same.  They’re always evolving.  Recently, I’ve taken a look at some 3-Act Tasks I created and I noticed:

  • Some of the tasks are lacking an act.
  • Others have resources that no students ask for (at least students that I’ve worked with).
  • The quality is low (shaky camera, point of changes, etc.)

So, I finally had a minute (read 2 days) and revisited each.  Below, you’ll see the tasks I’ve chosen to revisit.  An explanation of the original, what I changed, and why I changed it follows.  If you’d like to skip this and get to the revisited tasks, click here.

Revisited #1 – The Candy Bowl

My very first attempt at a 3-act task was the Candy Bowl task.  I was working in an elementary school at the time and Graham Fletcher had created problem to get 2nd and 3rd grade students reasoning about subtraction by removing the numbers from the problem context.  His context involved the lunchroom and numbers of students in three classes.  We talked on the phone about this for a while and though I liked the problem, I wasn’t crazy about the context.  I sat in my room trying to think of a context that would be a bit more engaging for students to think about.  And the Candy Bowl was created.

 img_4224

It was a good problem, but it really lacked one of the most basic parts of a 3-Act Task… The third act.  The reveal was weak, because it relied on the teacher to give students validation.  The updated version, which had to be done from scratch (apparently whoppers candies are no where to be found anywhere near Valentine’s day), can be found here with all new updated resources for Act 2 and new video including two reveals, depending on which question students decide to tackle.

Revisited #2 – Sweet Tart Hearts

Another one of my early tasks was Sweet Tart Hearts.  I really liked this one from the beginning. There is a huge focus on estimation which allows for students to obtain solutions that are close, but not exact in most cases.  This also allows for the teacher to facilitate a discussion about why answers may not be exact for a variety of reasons.  But again, it really lacked that third act.  The task was good, but the closing of the lesson was weak due to the fact that the students were relying on the “all knowing” teacher to give them affirmation.

screen-shot-2017-02-12-at-2-58-35-pm

Apparently Sweet Tart Hearts are a hot commodity a few days before Valentine’s day.  I went out the other day for a quick run to pick up a bag.  I had to go to 4 stores and finally found a bag (the last one).  I thought it would take about 10 minutes to do this revisit.  Surely the  numbers for the colors would be similar to the last time.  Not only was that not true, but Sweet Tarts changed the orange hearts to yellow!  But, the revisit is all done and I’m very pleased with the new reveal which allows the video to reveal the answer and the teacher to focus students on the reasonableness of their solutions.

Revisited #3 – The Penny Cube

My final revisit is the Penny Cube.  It is probably my favorite task.  I’ve certainly heard more from teachers about this task than any of the others.  I think I got the reveal right on this one.  The problem I found with this task was that I thought students would ask for things that I would want.  The first time I did this task with students, I guided them to the information I had ready for them.  They didn’t care anything about the dimensions of a penny.  They just wanted some pennies and a ruler.  It’s amazing what you learn when you listen to students, rather than try to tell them everything you think they need to know. So, to all of the students out there, Thank you for making your voices heard!

screen-shot-2017-02-12-at-3-02-06-pm

So, this was the quickest fix.  I just updated the Penny Cube page (all of the coin specifications are still there – in case anyone wants them).

Note:  In this post I share how I changed my approach to teaching the Penny Cube task. 

So, it took a few days, but I’ve revisited some tasks that have been bugging me for a while and I hope it’s for the best.  I know I’ll probably give these another look in the future.  I’ll just need to start in early January to make sure I get the candy I need.

The Best Part about Blogging

This is super exciting!  I love it when teachers keep thinking – especially when I stop!  What you’re about to read is truly the best part of blogging!

Readers of Under the Dome have been terrific commenters and questioners of my posts over the last 2 years and you all just keep getting better.  Recently, Sharon Wagner, a teacher I met during a three-day summer institute in June visited my blog and reached out to share her ideas about the Olympic Cola Display 3-act task.

Sharon’s words:

Screen Shot 2015-08-16 at 7.34.10 PM

Through the course of a few emails over the summer and a lot of my time spent doing things outside of the MTBoS (my lovely wife got some of her honey-do’s completed and I got some of my Mike-do’s finished) I have Sharon’s extension and am now posting it with her blessing!  Please take a look.  Her idea is a natural extension and allows students to design their own display using the colors of Coca-Cola twelve packs (which she most helpfully added to her document).  Any Pepsi fans out there?

Sharon’s idea also ups the rigor by providing an audience (the merchant).  This, again, is a part of that natural extension (of course someone designs these displays for the merchants).  As for the Standards for Mathematical Practice . . . let’s just say your students will be engaging in multiple SMPs.

Again, this is super exciting.  I love to share my ideas here, but when someone else takes it and makes it better – in this case by adding to it – everyone wins.  Especially the students in our classrooms.

Thank you Sharon.

Sharon’s Display Extension:

coca cola display project extension

 

 

Empowering Students with In-N-Out Burger

The following is a reflection on a 3-Act task I modeled for an 8th grade teacher last week.  The 3-Act is In-N-Out Burger from Robert Kaplinsky and the plan I followed I completely stole from the amazing @approx_normal ‘s blog post on her work with the same 3-Act with administrators last year.

This past Thursday was the day we agreed on to model the lesson.  So, this group of 8th grade students, who have never even seen me before, are wondering who this guy is that’s about to teach their class.  And, just as planned, they were giving me weird looks when I showed them the first cheeseburger picture and asked them what they noticed.  I believe one of them even asked, “Are you a teacher?”

Fast forward through to the “What do you wonder?” piece and the questions were amazingly well thought:

  • “How much weight would you gain if you at that whole thing (100×100 burger?)”
  • “How much do the ingredients cost for it (100×100 burger)?”
  • How much does it (100×100 burger) cost?
  • “Why would someone order that (100×100 burger)?”
  • “Did someone really order that (100×100 burger)?”
  • “How long did it take to make the (100×100 burger?)”

There were just a couple more, and they all came up very quickly.  The students were curious from the moment we started the lesson.  They are still working on precision of language.  The parentheses in their questions above denote that this phrase was not used in the question, but was implied by the students.  We had to ask what “it” or “that” was periodically throughout the lesson as they worked and as time went on, they did become more consistent.

The focus question chosen was:

  • How much does it (the 100×100 burger) cost?

Students made estimates that ranged from $20 to $150.  We discussed this briefly and decided that the cost of the 100 x 100 burger would be somewhere between $20 and $150, and many said it would be closer to $150 because “Cheeseburgers cost like $1.00, and double cheeseburgers cost like $1.50, so it’s got to be close to $150.”  That’s some pretty sound reasoning for an estimate by a “low” student.

As students began Act 2, they struggled a bit.  They weren’t used to seeking out information needed, but they persevered and decided that they needed to know how much a regular In-N-Out cheeseburger would cost, so I showed them the menu and they got to  work.

I sat down with one group consisting of 2 boys (who were tossing ideas back and forth) and 1 girl (Angel) who was staring at the menu projected at the front of the room.  She wasn’t lost.  She had that look that says “I think I’ve got something.”  So, I opened the door for her and asked her to share whatever idea she had that was in her head.  She said, “Well, I think we need to find out how much just one beef patty and one slice of cheese costs, because when we buy a double double we aren’t paying for all of that other stuff, like lettuce and tomato and everything.”  The boys chimed in: “Yeah.”  I asked them how they would figure it out.  Angel:  “I think we could subtract the double-double and the regular cheeseburger.  The boys, chimed in again:  “Yeah, because all you get extra for the double double is 1 cheese and 1 beef.”  “Well done, Angel!”  You helped yourself and your group make sense of the problem and you helped create a strategy to solve this problem!  Angel: (Proud Smile)!

We had to stop, since class time was over.  Other groups were also just making sense of the idea that they couldn’t just multiply the cost of a cheeseburger by 100, since they didn’t think they should have to pay for all of the lettuce, tomato, onion, etc.

They came back on Friday ready to go.  They picked up their white boards and markers and after a quick review of the previous day’s events and ah-ha moments, they got to work.  Here is a sample after about 15 minutes:

IMG_0940

 

 

 

 

 

Many groups had a similar answer, but followed different solution pathways.  I wanted them to share, but I also wanted them to see the value in looking at other students’ work to learn from it.  So I showed this group’s work (below-it didn’t have the post-its on it then.  That’s next.).  I asked them to discuss what they like about the group’s work and what might make it clearer to understand for anyone who just walked in the classroom.

Shared Student Work

 

 

 

 

 

 

 

Here’s what they said:

  • I like how they have everything one way (top to bottom).
  • I like how they have some labels.
  • I’m not sure where the 99 came from.  Maybe they could label that.
  • Where’s the answer…

During this discussion, many groups did just what @approx_normal saw her administrators do when she did this lesson with them.  They began to make the improvements they were suggesting for the work at the front of the room. It was beautiful.  Students began to recognize that they could make their work better.  After about 5 minutes, I asked the class to please take some post-its on the table and do a gallery walk to take a close look at other groups’ work.  They were to look at the work and give the groups feedback on their final drafts of the work using these sentence starters (again, from @approx_normal – I’m a relentless thief!):

  • I like how you. . .
  • It would help me if you. . .
  • Can you explain how you. . .

Some of the feedback (because the picture clarity doesn’t show the student feedback well):

  • I like how you showed your work and labeled everything.
  • I like how you broke it down into broke it down into separate parts.
  • It would help me if you spaced it out better.
  • I like how you explained your answer.
  • It would help me if it was neater.
  • I like how you explain your prices.
  • I like how you wrote your plan.
  • I like how you explain your plan.
  • I like how you told what you were going to do.
  • Can you explain how you got your numbers.
  • I like how you wrote it in different colors.
  • It would help me if you wrote a little larger.

Some samples with student feedback:

Student Feedback 1 Student Feedback 2 Student Feedback 3 Student Feedback 4 Student Feedback 5 Student Feedback 6 Student Feedback 7 Student Feedback 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not only was the feedback helpful to groups as they returned to their seats, it was positive.  Students were excited to see what their peers wrote about their work.

Now for the best part!  Remember Angel?  As she was packing up to leave, I asked her if her brain hurt.  She said, “No.”  After a short pause she added, “I actually feel smart!”  As she turned the corner to head to class, there was a faint, proud smile on her face.  Score one for meaningful math lessons that empower students.

Please check out the websites I mentioned in this post.  These are smart people sharing smart teaching practices that are best for students.  We can all learn from them.

Perplexing Donuts

A good friend and colleague, Krystal Shaw, tweeted this article about Krispy Kreme Donuts in the UK a while back and it immediately got me thinking. . . so I really liked it and wanted to use it with kids.  To plan for the lesson, I started to take myself through this problem as if it were a 3-act task (I wasn’t sure it would become one, but I wanted to see where this would lead).  I looked at the picture:

Top of Box

and jotted down what I noticed. Then I began wondering:

  • How many donuts are in that big box?
  • What are the dimensions of the box?
  • Is there more than one layer of donuts in the box?
  • How many rows of donuts are there?
  • How big is (What is the diameter of) a Krispy Kreme donut?
  • When I was finished (or thought I was finished) wondering, I began to seek the information needed to answer my questions.

I found some nice strategies for determining the number of donuts in the box.  Strategies accessible for 4th grade students.  I was happy, so I moved on to the next question: What are the dimensions of the box?

This is when it happened.

I was stuck.

Perfect.

Challenge accepted.

I looked at the pictures, found the information in the article, then began to question that information (and myself) as well as some critical friends.  This problem was getting better and better as I walked myself through it.  Fantastic!  SMP 3: Construct viable arguments and critique the reasoning of others, such as a Krispy Kreme representative from the UK or a USA Today reporter.  Maybe this question won’t have a third act, but the estimation and reasoning used to solve this could be extremely empowering for kids.

I challenge you to solve this problem with your class as well and share your results.     Challenge yourself and your students to construct a viable argument and critique the reasoning of others.  Does your math challenge the information in the article or support it.  Either way, integrate writing into math class in a meaningful way:

write to the reporter, Bruce Horovitz or Krispy Kreme UK: helpdesk@krispykreme.co.uk and tell them what you  discovered

Time for me to give this a try!  More in about a week.

By the way:  Krystal Shaw gave her amazing Mathletes after school club the task of writing a 3-act math lesson for their teachers to teach.  I think she should post it on her blog to share with the MTBoS!

The Penny Cube

I just finished a 5th grade 3-Act task called Penny Cube that I created last spring.  I tried it then, but just to get some feedback from students and see what I might need to change about how the task should be presented.  Now, after completing this task with two groups of students (at two different points in the year), I’ve learned three things:

  1. Students see a video and notice a bunch of things that teachers don’t even realize are there.
  2. The curious questions students ask first are often “why” questions.
  3. There’s no way to predict everything a group of students might wonder.

I’ll take this reflection from the beginning.  First, I let students know that I was going to show them a video clip.  I also told them that I was going to ask them what they noticed when it was finished playing.  I gave students a chance to brainstorm ideas about what they could do to make sure they would be able to share what they noticed once the clip had finished playing.  Their ideas were amazing:

  • We could look for expressions (on faces – I found out later that this student was thinking about context.  A person’s facial expression can tell a lot)  Unfortunately, there were no facial expressions in this video.
  • Listen carefully (they might be able to hear something that might give them a clue about what was going on – these students were already expecting a problem situation!)
  • Stay focused on the clip.
  • Take notes.
  • Try to remember as much as you can.

I had never done this before, but after hearing their ideas, I will be using this again.

After showing the video clip for Act 1, I immediately had them talk about what they noticed with their groups.  Then, they were asked to share with the whole group.  Here is what they noticed:

Penny Cube Notices

What’s missing from this picture is the wonderful reasoning given for some of these.  For the last bullet, “container is open in the front,” the student told the class that it was open in front so the pennies could be placed in the container more easily (I never thought they’d see or think about that).  They even began to wonder a bit here – “it might be an expression or it might be counting.”  My favorite, though, is the estimation by the girl who said “it looks like 100 pennies in the stack ($1.00).”  This was particularly interesting to me because of what happened when they were asked to estimate for the focus question.

The wonders were typical from what I usually get from students new to 3-Act tasks, but I handled it a bit differently this time.  Here are their wonders (click here for a typed version of Penny Cube Notices&Wonders):

Penny Cube Wonders

In my limited (yet growing) experience with teaching using 3-Act tasks, I’ve noticed that the wonders are initially “why” questions (as stated in number 2 above).  I told the class that I noticed that the questions they were asking were mostly “why” questions.  I asked them what other words could be used to begin questions.  Rather than trying to steer students to a particular question, I decided to focus the students’ attention on the kinds of questions they were already asking, and guide them to other types of questions.  It didn’t take long!  Within about 5 minutes, students had gone from “why” questions to “how many . . .” and “how much . . .” questions which are much easier to answer mathematically.

The students were then asked to figure out what they needed to solve the problem.  From experience with this task, I knew that most students would want pennies, so I had some ready.  I didn’t give them the Coin Specifications sheet, because no one asked for it.  I did have it ready, just in case.  Every group asked for pennies and rulers.  I wasn’t sure how they would use them, but I was pleasantly surprised.

Here’s what they did:

How many pennies in 2 inches

How many pennies in 2 inches

How many pennies in an inch

How many pennies in an inch

How many pennies fit on a 6 inch edge of the base

How many pennies fit on a 6 inch edge of the base

How many pennies cover base

How many pennies cover base

How many stacked pennies in 2 inches?

How many stacked pennies in 2 inches?

 

 

 

 

 

 

 

 

 

 

 

The students all started in a place that made sense to them.  Some wanted to figure out how many in the stack, so they stacked pennies and quickly realized (as I did when filling the cube) that you can’t stack pennies very high before they start to wobble and fall.  So, they measured smaller stacks and used that info to solve the problem.  Others wanted to find number of pennies along an edge to find how many cover the base, then work on the stacks.  Students were thoroughly engaged.

After three 1 hour classes, students were wrapping up their solutions.  Some groups were still grappling with the number of pennies in a stack.  Others were finished.  A few were unsure about what to do with some of the numbers they generated.  All of this told the classroom teacher and me that there were some misconceptions out there that needed to be addressed.  Many of the misconceptions had to do with students disengaging from the context, rather than integrating their numbers into the context:

  • One group was unsure of whether to multiply  the number of pennies in a stack by 12 (6 inches + 6 inches) or to use 64.
  • Another group found the number of pennies to cover the base and multiplied it by itself to get their solution.
  • A third group found 37 pennies in 2 1/2 inches and was having a difficult time handling that information.
  • A fourth group had come up with two different solutions and both thought they were correct.  Only one could defend her solution.

Eventually, several groups arrived a solution that made sense to them.

Time to share!

I chose one group to share.  This group had a reasonable solution, but their method and numbers were different from many of the other groups, so this is where we were hoping for some light bulbs to begin to glow a bit.

This group shared their work:

20140919145046-3351215

 

 

 

 

 

 

 

 

 

 

I asked the class what they liked about the work.  The responses:

  • The math (computations) are written neatly and they’re easy to follow.
  • I know what their answer is because it has a bubble around it.
  • The question is on it.
  • It’s colorful.

All good.  Now, for the best part:

What questions do you have for this group?  The responses:

  • Where did you get 34?
  • What does the 102 mean?
  • How about the 64?

Any suggestions for this group to help them clarify their work to answer some of your questions?

  • Maybe they could label their numbers so we know what the numbers mean.
  • Maybe they could tell what the answer means too.  Like put it in a sentence so it says something like “6,528 pennies will fit in the container.”
  • Maybe they could have a diagram to show how they got a number like 64 or 34.  I know that would help me (this student had a diagram on his work and thought it was useful).

The light bulbs really started to glow as students began making suggestions.  As soon as a suggestion was made, students began to check their own work to see if it was on their work.  If it wasn’t, they added it.  All of the suggestions were written on the board so they could modify their work one final time.  The best part about this whole exchange was that students were suggesting to their peers to be more precise in their mathematics (SMP 6 – Attend to precision).  And, they really wanted to know what 34 was because they didn’t have that number on their boards (which is why I chose this group).

Now for the reveal!  When I asked the class if they wanted to know how many pennies were in the cube, they were surprised when I pulled up the reveal the video.  I guess they thought I’d just tell them (that’s so 1980’s).  They watched to see how close they were and when the total came up on the screen, many cheered because they were so close!

The students in this class were engaged in multiple content standards over the course of 3 days.  They reasoned, critiqued, made sense, and persevered.  It’s almost difficult to believe that this class was a “remedial” class!

Below, I’ve included a picture of each group’s final work.

20140916143126-1706895 20140916143218-1880868 20140916144859-1652302 20140916143241-1966871 20140916143157-1917874

 

 

 

 

 

 

 

Finally, one of the conversations witnessed in a group was between a girl and a boy and should have been caught on video, but wasn’t.  This group had an incorrect solution, but they were convinced they were correct, so to keep them thinking about the problem, I asked them how many dollars would be equal to the number of pennies in their answer (3,616).

  • Girl:  There are 100 pennies in a dollar.  So 600 pennies is . . .
  • Boy in group: $6.00
  • Girl (after a long pause):  1,000 pennies equals $10.00
  • Boy:  So that’s . . . um. . .
  • Me:  How does knowing 1,000 pennies = $10.00 help you.
  • Girl:  We have 3,000 pennies, so that’s $30.00.
  • Boy:  $36.00
  • Me:  Share with your group how you know it’s $36.00
  • Boy:  Because $30.00 and $6.00 is $36.00
  • Girl:  And the rest (16) are cents.  $36.16!

And they didn’t even need a calculator!

Math really does make sense!

So…Have You Always Taught Math This Way?

I’ve been asked this question several times over the past 15 years or so.  Most recently at a workshop I facilitated for middle school teachers.  The short answer is no.  My teaching has evolved.  I strive to improve my practice every day.  Below, is my response to the group of middle school teachers.

When I first started teaching, I used what I learned in college about teaching mathematics – you know . . . using manipulatives, group work, classroom discussions.  All of those things that I still use today.  But, when things didn’t go the way I anticipated, I seemed to always fall back on the way I learned which was primarily stand and deliver.

At the end of my first year, I spent some time in my room, at my desk and wrote down all of the changes I wanted to make and how I planned to make them.  This was probably the best idea I ever had!  Throughout the summer I reread that list and, when necessary, created things that would help me reach my goals.  I didn’t reach them all, but the next year was much more successful.  Couple that with the summer PL that I took and the way I was teaching math was really beginning to change.

One of the first changes I made was to incorporate children’s literature into my lessons.  One of the PL’s I took that summer was a Marilyn Burns workshop where we  learned that there are a tremendous number of books with mathematical connections.  We learned how use the books to introduce mathematical concepts and problem solving, how to ask better questions, and one of my big “take-aways” was to listen more!

Over the years, I’ve continued to look at literature as a place to begin lessons.  And all was going well, but I still wasn’t getting the the amount of  buy-in from my students that I wanted.  I was excited about the math, but they weren’t.  Then, one morning, I was riding to work with my wife, Kim.  We were listening to a morning radio show in Atlanta on 99x called the Morning X with Barnes, Leslie, and Jimmy.  On that morning, November 10, 1999, Jimmy was laughing about a news story that he couldn’t wait to share.  As he was reading, I was scrambling to write it all down!  The story went like this:

Earlier this morning a man held up a GA-400 toll booth.  His stolen getaway car broke down and he is now on the run with a 58 lb. bag of quarters.

When I got to school, I turned on my computer, printed the story out on a transparency with a picture of some quarters and put it on the overhead.  Here’s a sample of what happened:

GA400_Screenshot

Several students as they entered the classroom:  Mr. W., what’s that on the overhead?

Me:  I heard that on the radio this morning and wanted to know what you all thought and if you had any questions.

Multiple student responses:  “Oh, ok.”   “That guy is stupid.”   “What kinds of questions do you want?

Me:  Whatever questions come to mind.  You can write your thoughts and questions in your journal.

What I got from these 5th grade students at the beginning of class amazed me.  They were totally engaged in the problem.  The problem context had them so curious, they wouldn’t let go.

Some of their questions:

  • How many quarters is that?
  • How much money is that?
  • How tall would a stack of 58 lbs of quarters be?
  • How far could you run with a 58 lb bag of quarters?
  • How big is the bag of 58 lbs of quarters?
  • How long would a trail of 58 lbs of quarters be if they were laid end to end?

This one context from a morning radio show kept my students focused on the mathematical concepts of weight, length, decimal computation, and time for over a week.  More questions came up as new ones were answered.  They had developed not only a curiosity, but an intellectual need to know.

This is what I had been searching for.  A context that engaged my students in mathematics so deeply, that they wanted to figure out the answers to their own questions.

It wasn’t easy to find stories like this back then.  But now, they’re everywhere.  Just Google bizarre news stories. Since then I’ve learned, along with a whole host of others (check out some of the people I follow), that I can create these contexts using all sorts of media to get the same results (3-Act Tasks).

Below is a copy of the original context I used with my students.  The image has changed over the years, but it is essentially the same document.  And it works just as well today as it did 15 years ago!  I just wish I had a recording of the news story!  If you decide to use this, please share your experience.  I’d love to hear about it!

GA400 toll problem

 

What Math Teachers Can Learn from Magicians

Yeah, you read that right! I know many of you are now probably thinking about at least one, or likely, a combination of these questions:

  1. What could math teachers possibly have to learn from magicians?
    1. How could there be a connection between these two very different careers?
  2. How would Mike know?

Beginning with the last question probably makes the most sense.  At an early age I developed a fascination with magic, sleight of hand to be specific. Any magician I saw perform – either on TV or live – filled me with wonder. Certainly, some of that wonder was directed toward how the trick or illusion worked, but even beyond that I wondered how I could learn to create this wonder in others. Since I was about 10, I have studied magic and about 7 years later I began performing magic shows at schools, for church groups, and even for a few holiday parties. Once I began my career as a teacher, my role as a magician changed and I focused most of my energy on teaching.  I’ve lived the life of a magician and a teacher and over the last few years, and I’ve begun to notice the similarities between the two.

A magician’s goal is to entertain his or her audience while bringing about a sense of wonder. The means for accomplishing this goal involves the use of any combination of a number of tools including misdirection, psychology, sleight of hand, and story telling. If a magician does his or her job well, the feeling of being tricked doesn’t really enter into a spectator’s mind.  The big idea here is the creation of wonder.

wonder-bwf-quote

That’s the first thing teachers can learn!  It doesn’t take a sleight of hand artist to build a sense of wonder in students.  It takes some creativity and some work and dedication to the idea that all students deserve the chance to wonder and be curious.  All students need that sense of wonder that builds inside them and creates an intellectual need to know and learn.  

This is a great time to be a teacher of mathematics.  Evoking this wonder in students in math classes is extremely accessible because of technology and the online math community know as MTBoS. There are hundreds of math teachers out there at all grade levels and in all areas who have realized the power of making students wonder.  We’ve all been creating 3-Act Tasks and sharing ideas on blogs and webpages, twitter, and youtube or vimeo.  All for free.  They’re there for everyone to use – because we’ve all learned, through using these tasks, that it helps us build student curiosity, engages them in the mathematics and in their own learning, and it helps us build independent, creative mathematical thinkers. Here is more about why you should use 3-Act Tasks.

This brings me to the second thing we can learn from magicians: we can’t do this alone! If we work together, we all benefit!  Most people probably think that magicians are private wizards who lock themselves in a room to practice and never share their secrets.  That’s a bunch of crap! Magicians realized a long time ago that if they work together, they can work more efficiently and become more productive.  Sometimes magicians work on a trick for a while, get stuck and then bring it to some friends they have in the magic community. These other magicians share their ideas, they brainstorm, and try possible solutions.  Then they test the best solution on an audience.  This can be very scary!  Think about it.  This is a trick they’ve never tried – they’ve practiced (A LOT), and maybe even performed in front of small audiences. They must be nervous!  But they go out on stage or wherever their venue is and perform it.  They have to!  It’s how they pay their bills.  Often, some of their friends who helped them are there to provide feedback.  After several performances, and feedback, the script has been adjusted and the magic has been perfected, and it becomes a part of the magician’s repertoire.

Now think about how many math teachers still work. . . alone, in their room, not sharing their ideas.  Magicians realized this was not very productive a long time ago.  Other professions did the same.  It’s time math teachers realize this too!

Take a look at the MTBoS, and see what you think.  Look at some of the sites below and see if you find something you like.  Try some ideas/lessons with your students.  It’ll be a bit scary in the beginning, but soon it’ll become part of your repertoire!  We’re all here to learn from one another because “All of us are smarter than one of us!” ~ Turtle Toms 

What I’ve learned through this whole process is that I get the same feeling of success when I create the sense of wonder in students as I did as a magician creating wonder in an audience. . . but it’s even better with students!