Personalized Learning Can’t Trump Content & Pedagogy

The problem I’m seeing with personalized learning (overall and especially as it pertains to math instruction) is the common understandings about what it is, what it can look like, what it shouldn’t look like, and how it works as related to our own learning experiences are fragile at best.

Many school systems, including my own, are looking at personalized learning as a means to improve math instruction, raise math test scores, and increase student engagement. These goals are great and many systems have them in some form or another. However, when personalized learning forces teachers into using sweeping generalized practices that often trump solid content pedagogy, something is drastically wrong.

I don’t think this is necessarily the fault of personalized learning as a concept,  but I do think it is problematic when common understandings become compromised.  These compromised understandings lead to sweeping generalized practices like:

  1. No whole group instruction – ever
  2. Students should be on a self-paced computer program for personalized learning
  3. Teachers have to create new groups of students every day/week to make sure learning is personalized
  4. Teachers should do project based learning several times per unit to engage learners
  5. Teachers need to use choice boards for every standard they teach.

This is not a definitive list – just what I’ve heard from within my own district over the last few years.

I may not have a response to each of these, but I can point out a few sources in addition to my thoughts:

  1.  No whole group instruction – ever – Dan Meyer’s post:  my favorite idea from this is from Mike Caufield: “if there is one thing that almost all disciplines benefit from, it’s structured discussion. It gets us out of our own head, pushes us to understand ideas better. It teaches us to talk like geologists, or mathematicians, or philosophers; over time that leads to us *thinking* like geologists, mathematicians, and philosophers. Structured discussion is how we externalize thought so that we can tinker with it, refactor it, and re-absorb it better than it was before.”

2.  Students should be on a self-paced computer program for personalized learning Personalized learning is not something you get get from the App Store or Google Play  or from any ed tech vendor.

Screen Shot 2016-02-12 at 3.31.02 PM

Some other comments from Dan Meyer:  Personalized Learning Software: Fun Like Choosing Your Own Ad Experience  and from Benjamin Riley:  “Effective instruction requires understanding the varying cognitive abilities of students and finding ways to impart knowledge in light of that variation. If you want to call that “personalization,” fine, but we might just also call it “good teaching.” And good teaching can be done in classroom with students sitting in desks in rows, holding pencil and paper, or it can also be done in a classroom with students sitting in beanbags holding iPads and Chromebooks. Whatever the learning environment, the teacher should be responsible for the core delivery of instruction.”

3.  Teachers have to create new groups of students every day/week to make sure learning is personalized – I’m not sure this is the case.  If teachers really know where their students are in their mathematical progressions (lots of ways to do this – portfolios, math journals, student interviews (GloSS and IKAN from New Zealand, etc.)  These types of data are much more effective that computer testing programs because teachers are able to see and hear students’ thinking as well as their answers.  In my opinion, you can’t get more personalized than that!

4.  Teachers should do project based learning several times per unit to engage learners – anyone who has had PBL training knows that 1 per year is a good start!  PBL takes time – to plan, and plan some more (most often with other content areas).  If anyone expects more than one per year or semester initially, it’s time to have some Crucial Conversations!

5.  Teachers need to use choice boards for every standard they teach – student voice and choice does not have to be a choice board.  And really, how much of a choice do students have if we’re giving them all possible choices with no input from them?

To sum up: In order to really improve those goals of improving math instruction, increasing student engagement, and raising math test scores one thing is certain – an investment to increase teacher content and pedagogy knowledge must be at the forefront.  There is no other initiative or math program that will help districts reach these goals more effectively than this!








Are Your Students Doing Mathematics?

It seems like a silly question, really.  The answer, we would expect, is “Yes, every day!” Unfortunately, I’m not sure this is the case.

For those of you about to first step foot on the exhilarating math train that is teaching mathematics, it’s probably a good idea to share a few facts and myths about learning and doing mathematics.


  • math is equated to certainty (sadly, this belief is held by many!)
  • knowing mathematics means being able to get the correct answer – quickly (again, this belief is held by many)
  • mathematical correctness is determined through the use of a teacher or an answer key.


  • mathematics  is a science of pattern and order (this was taken from Everybody Counts)
  • math makes sense (teachers cannot make sense of mathematics for students)
  • doing mathematics requires students to solve problems, reason, share ideas and strategies, question, model, look for patterns and structure, and yes even fail from time to time.

If you walk into a math classroom – at any level – students are doing mathematics if you see/ hear students doing the following:

Explore Construct Justify Develop
Investigate Verify Represent Describe
Conjecture Explain Formulate Use
Solve Predict Discover Discuss

If teachers are doing most of these, a shift needs to happen.  All students can do these things.  All students can learn and do mathematics.  All students can make sense of mathematics because math makes sense.

As I reread what I’ve written so far, it tends to read a bit negative.  That was not my intent.  I just wanted to point out that wherever you are in the vast range of stakeholders of math education, please be aware that just because there are students in a math class, does not mean they are necessarily doing mathematics.  That wasn’t much better!

This might be a better way to end this post:

There are many of us (more than I thought when I first started this blog) who are making the case for teaching mathematics for understanding through engaging tasks.  Dan Meyer, Andrew Stadel, Fawn Nguyen, Graham Fletcher, Jenise Sexton, and Robert Kaplinsky, just to name a few, use their blogs to share their thoughts, lessons & tasks they create, and their thoughts on what it means for students to learn and do mathematics.  These, and many others, continue to push all of us to become a better math teachers.  Personally, they strengthen my resolve, knowing that our numbers are growing along with our minds and the minds of our students!


Relevant Decimals Lesson

This is a lesson that I tried with a 5th grade class to give a context to decimal addition and subtraction. Most of the math problems I’ve found involving decimal computation seem “artificial.” They have a “real world” connection, but the connections are irrelevant to most 5th graders. In order to make the connections more relevant (as Dan Meyer posted in a recent blog: students want to solve it) I came up with a context for a problem that had the math content embedded, but also involved the students in the problem itself. Credit for this lesson needs to go to a 3-5 EBD class at my school. The students in this class about 3 yrs ago, loved to make tops out of connecting cubes. They did this because they were told that they couldn’t bring in any toys to class (Bey Blade was the hot toy at the time). Since they couldn’t bring in these spinning, battle tops, they created their own with connecting cubes.

The first time I witnessed these students spinning their tops, the big question they wanted to know, was whose top spun the longest. I filed the idea away until about a week ago when some 5th grade teachers at my school asked for some help with decimals. The following is the lesson I used – thanks to this class of students. It’s written as it was done. I know what I’d change when I do it again. Please take a look. Use it if you like. I’d love to hear about your results and how you change it to make it better!


5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.

5.NBT.3 Read, write, and compare decimals to thousandths.

a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9 × (1/100) + 2 × (1/1000).

b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.


Connecting cubes

Decimats, or Base-ten manipulatives for modeling

Stopwatches (we used an online stopwatch that measured to thousandths of a second)


Give students a copy of the decimat and ask what decimals might be represented. Follow up with these possible questions: What might hundredths or thousandths look like? How could you use this to model 0.013? 0.13? Share your thoughts with your partner/team?

Work Session:

The task is to design a spinning top, using connecting cubes, that will spin for as long as possible. Your group may want to design 2 or 3 tops, then choose the best from those designs. Once a design is chosen, students will spin their top and time how long it spins using a stopwatch. Each group will do this 4 times. Students should cross out the lowest time. Students will then use models and equations to show the total time for the top three spins. Students will show, on an empty number line, where the total time for their three spins lies. Students must justify their placement of this number on a number line.

Here is a sample top (thanks for asking for this Ivy!)



Students present their tops and their data, then compare their results.

Possible discussion questions:

Whose top spun the longest?

How do you know?

How much longer did the longest spinning top spin than the second longest spinning top?

Show your thinking using a model.

How many of you would change your design to make it spin longer?

How would you change it?

Decimat model 2

Students used models to explain their thinking to each other and construct viable arguments.

Students used models to explain their thinking to each other and construct viable arguments.

Lesson Opening Takes Over


5th grade-Decimal understanding and comparing.

I went into the class to model a lesson where students use

models to understand and compare decimals. My opening

was an empty number line with 11 hash marks – zero on the

far left and 1 on the far right.

I asked students if they knew what any of the hash marks on

the number line should be labeled. Only a few students raised

their hands, so I asked the class to talk about  this at their

tables for a minute.

After a quick discussion, a boy was chosen to come to  the front.

I asked him to point to the hash mark on the number line that

he thought he knew the label for. He pointed to the  middle line.

What I would’ve done 15 years ago, is ask him what it should be

labeled and move on with the lesson.  Instead, I asked him to

whisper what the label for the hash mark should be.

I thanked him and asked all of the groups to focus on the middle

hash mark on the empty number line and see if they could agree

on what it should be labeled.

This teaching strategy never ceases to amaze me – and neither do the

students.  The conversations were incredible.  Just allowing students

to share their ideas with each other and try to make sense of numbers

(fractions and decimals) on a number line.

In the beginning of their discussions, most students thought 1/5 (the

same thing the boy whispered in my ear). Their reasoning was that

there were 11 hash marks and the middle one was the fifth one over.

It made “perfect incorrect sense.”  But I learned what misconceptions

were prevalent in the class.

As I talked with each group, students began to question their own

reasoning.  One group, while defending the idea of 1/5 said, “Yeah,

the fifth one over is in the middle and . . . well, it is in the middle, so

it could be 1/2.” This was my time to ask, “Can it be both 1/5 and

1/2? You have 90 seconds to discuss this and I’ll be right back.”

By the time I got back, they had decided it had to be 1/2, because

they “knew” that 1/2 and 1/5 weren’t the same.

When we came back as a whole group, many of the students had

shared that they had thought it was 1/5 at first, but many changed

their minds because of the idea of the hash mark being in the middle.

Many changed their minds to 1/2, but not all.  Some had decided that

since our standard was about decimals, the hash mark should be

labeled 5/10.  The next discussion lead to proving that 1/2 = 5/10.

Once students were comfortable with the decision that 1/2 = 5/10, I

asked them to label the hash mark to the left of 5/10.  The discussion

was quick and efficient.  They knew it was 4/10 because there were

ten “sections” on the number line (no longer 11 lines), and that hash

mark was the end of the 4th of the 10 sections.  They were thinking of

the number line as an equally divided line (fractions).

Finally, the students were asked to draw a number line in their journals,

like the one at the front of the room, and label all of the hash marks

with fraction and decimal notation.

It’s important to note that this opening to the lesson (that ended up

becoming the whole lesson) would not have been possible if the teacher

hadn’t developed group norms with the students at the beginning of

the year.  This class knows, after 9 weeks, how to talk to each other,

discuss their thinking, and work together toward a common goal.