Mathematical Models

Math Students are Bleeding Out!

Let me explain.  There’s a math epidemic (remember Ebola 2014+).  Students are bleeding out from the gashes of their misconceptions of mathematics.  The lack of teaching conceptual understanding along with sacrificed opportunities to make mathematical connections is the double edged sword.  This is an epidemic, and some teachers, school systems and educational leaders are treating it like it’s a tiny scratch, instead of the pervasive threat to mathematical achievement that it is.

Here’s a familiar scenario:  A school’s test scores come back after the spring testing season (or mid-terms).  The scores show little growth from the previous year in the area of mathematics, and any change is not in a positive direction.  The knee-jerk reaction to the valid question, “What can we do to fix this?”  is to look for programs and technology that will fix the problem.  These are the same individuals who, way back in August, looked us all in the eye and, with the greatest of sincerity, reminded us that the single most important factor determining student success is the quality of the teacher.  Not new programs.  Instead of growing the quality of teachers, we get programs that:

  • push speed over comprehension (imagine if we taught reading this way).
  • define fluency based on digits rather than efficiency, flexibility, and accuracy.
  • use technology to separate us from our students when we know that what we really need is to spend more time listening to them and creating an interactive classroom with technology as a support for this human interaction
  • are essentially Band-Aids

I often hear the phrase “back to the basics” in times like these.   I’ve heard parents, administrators, and even a few teachers say this.  I think everyone would agree that “back to the basics” should mean that students become computationally fluent.   The idea of going back to this implies that we were doing something right before.  And we all know that’s not true.  After all we have generations of adults who are not computationally fluent and/or have extreme math anxiety.  And how did that happen?

Answer 1:  Timed tests.  My sixth grade teacher called them speed tests.  We did them every day, right after lunch.  (I was never in the top 10).

Answer 2:  Algorithms memorized by students with no understanding, presented by teachers with little understanding other than from a teachers’ edition.

Answer 3:  Little or no real problem solving.  Naked computation all around.  No wonder students were turned off by mathematics!

Answer 4:  No interaction.  Math is a social activity.  If you talk to any engineer, designer, architect, mathematician, statistician, etc.  They aren’t doing their work in an office silently sitting in rows.  They’re constantly talking to one another about the mathematics they’re using.  The idea that all of us are smarter than one of us makes so much sense in the real world and it should make sense in the classroom as well.

If we went back to teaching math like we did 20-30 years ago (I think that’s what some of these folks were implying when they said “back to the basics.”  We’d still be in the same boat.  Anyone ever watch How old is the shepherd?.  That was popularized over 20 years ago and the results haven’t changed.  Going back is not an option.  Building fluency is.

So what do we need to do in math classrooms?  I have a few ideas to stop the bleeding and these are certainly not original to me.

keep calm

  1. Apply pressure to the wound. Give up on the ineffective treatment, not the patient.  Apply pressure to stop the bleeding.  Focus on tasks and activities that build number sense.  Number Talks, Math Talks, Estimation 180, Visual Patterns any or all of these can be put in place at any level.  And the best part is, students can easily be trained to begin to apply the pressure themselves.  They have the power to stop the bleeding!
  2. Close the wound. This can only happen with stitches.  And it takes time to get the hang of it.  The wound has to be closed with the thread of understanding.  We can’t understand for them, so the wound has to be closed with the help of the students.  The students create this thread as we stitch and we can’t do it without them.  How do they create this thread of understanding?  We have to stop telling so much and instead “be less helpful.”  If we tell students too much, the thread breaks.
  3. Treat any symptoms that may show up after the initial treatments above:

Symptoms

Name

Treatment

Students may begin to rely on rote procedures with no foundational understanding

Sometimes unintentionally caused by parents & other adults trying to help.

Misconceptionitis Identify the misconception(s) and re-build understandings using the CRA (Concrete Representational Abstract) model

Students are finding unreasonable solutions to tasks & problems and they often seem unaware; clueless

Unreasonableness

This is often attributed to students just not thinking enough.  Treatment should include a DAILY diet rich in estimation – prescribe www.estimation180.com

Students count (often on fingers when computing or rely on a calculator for the simplest of calculations and even then, they can get incorrect answers.

Influencia

This is often diagnosed along with unreasonableness (see above).  Its roots lie in naked computation and memorization of facts rather than allowing students to build strategies and practice those strategies until they become fluent.  First, counting strategies are the lowest level strategies.  Students need to build more efficient strategies by exercising with  investigations of number relationships through number talks, math talks, and strategy building.  Stop giving speed tests.

Students have strategies for computation, but are not applying them in problem solving situations No Solvia

Students need a heavy dose of problem solving every day.  This must involve students engaging in the Big 8 Standards for Mathematical Practice.  Problem solving tasks every day.  Hydrate often with student reasoning.  Adopt the classroom mantra: “The answer isn’t good enough.”

Begin new concepts with a problem before any formal instruction on the topic.  See what students can do before assuming what they can’t do.

I’m a teacher and I know many of you reading this are the choir that need no preaching to.  If you’re interested in saving the patient, stopping the bleeding, and raising math achievement, click on some of the links in this post.  There’s so much to learn from those smarter than me.  Also check out #MTBoS on Twitter.  Lots of math goodness from the best out there.

Click here and here to learn more about strategy development.  Great stuff from www.nzmaths.co.nz!

Perplexing Donuts

A good friend and colleague, Krystal Shaw, tweeted this article about Krispy Kreme Donuts in the UK a while back and it immediately got me thinking. . . so I really liked it and wanted to use it with kids.  To plan for the lesson, I started to take myself through this problem as if it were a 3-act task (I wasn’t sure it would become one, but I wanted to see where this would lead).  I looked at the picture:

Top of Box

and jotted down what I noticed. Then I began wondering:

  • How many donuts are in that big box?
  • What are the dimensions of the box?
  • Is there more than one layer of donuts in the box?
  • How many rows of donuts are there?
  • How big is (What is the diameter of) a Krispy Kreme donut?
  • When I was finished (or thought I was finished) wondering, I began to seek the information needed to answer my questions.

I found some nice strategies for determining the number of donuts in the box.  Strategies accessible for 4th grade students.  I was happy, so I moved on to the next question: What are the dimensions of the box?

This is when it happened.

I was stuck.

Perfect.

Challenge accepted.

I looked at the pictures, found the information in the article, then began to question that information (and myself) as well as some critical friends.  This problem was getting better and better as I walked myself through it.  Fantastic!  SMP 3: Construct viable arguments and critique the reasoning of others, such as a Krispy Kreme representative from the UK or a USA Today reporter.  Maybe this question won’t have a third act, but the estimation and reasoning used to solve this could be extremely empowering for kids.

I challenge you to solve this problem with your class as well and share your results.     Challenge yourself and your students to construct a viable argument and critique the reasoning of others.  Does your math challenge the information in the article or support it.  Either way, integrate writing into math class in a meaningful way:

write to the reporter, Bruce Horovitz or Krispy Kreme UK: helpdesk@krispykreme.co.uk and tell them what you  discovered

Time for me to give this a try!  More in about a week.

By the way:  Krystal Shaw gave her amazing Mathletes after school club the task of writing a 3-act math lesson for their teachers to teach.  I think she should post it on her blog to share with the MTBoS!

Relevant Decimals Lesson

This is a lesson that I tried with a 5th grade class to give a context to decimal addition and subtraction. Most of the math problems I’ve found involving decimal computation seem “artificial.” They have a “real world” connection, but the connections are irrelevant to most 5th graders. In order to make the connections more relevant (as Dan Meyer posted in a recent blog: students want to solve it) I came up with a context for a problem that had the math content embedded, but also involved the students in the problem itself. Credit for this lesson needs to go to a 3-5 EBD class at my school. The students in this class about 3 yrs ago, loved to make tops out of connecting cubes. They did this because they were told that they couldn’t bring in any toys to class (Bey Blade was the hot toy at the time). Since they couldn’t bring in these spinning, battle tops, they created their own with connecting cubes.

The first time I witnessed these students spinning their tops, the big question they wanted to know, was whose top spun the longest. I filed the idea away until about a week ago when some 5th grade teachers at my school asked for some help with decimals. The following is the lesson I used – thanks to this class of students. It’s written as it was done. I know what I’d change when I do it again. Please take a look. Use it if you like. I’d love to hear about your results and how you change it to make it better!

Standards:

5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.

5.NBT.3 Read, write, and compare decimals to thousandths.

a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9 × (1/100) + 2 × (1/1000).

b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Materials:

Connecting cubes

Decimats, or Base-ten manipulatives for modeling

Stopwatches (we used an online stopwatch that measured to thousandths of a second)

Opening:

Give students a copy of the decimat and ask what decimals might be represented. Follow up with these possible questions: What might hundredths or thousandths look like? How could you use this to model 0.013? 0.13? Share your thoughts with your partner/team?

Work Session:

The task is to design a spinning top, using connecting cubes, that will spin for as long as possible. Your group may want to design 2 or 3 tops, then choose the best from those designs. Once a design is chosen, students will spin their top and time how long it spins using a stopwatch. Each group will do this 4 times. Students should cross out the lowest time. Students will then use models and equations to show the total time for the top three spins. Students will show, on an empty number line, where the total time for their three spins lies. Students must justify their placement of this number on a number line.

Here is a sample top (thanks for asking for this Ivy!)

Top

Closing:

Students present their tops and their data, then compare their results.

Possible discussion questions:

Whose top spun the longest?

How do you know?

How much longer did the longest spinning top spin than the second longest spinning top?

Show your thinking using a model.

How many of you would change your design to make it spin longer?

How would you change it?

Decimat model 2

Students used models to explain their thinking to each other and construct viable arguments.

Students used models to explain their thinking to each other and construct viable arguments.