Learning

What Math Teachers Can Learn from Magicians

Yeah, you read that right! I know many of you are now probably thinking about at least one, or likely, a combination of these questions:

  1. What could math teachers possibly have to learn from magicians?
    1. How could there be a connection between these two very different careers?
  2. How would Mike know?

Beginning with the last question probably makes the most sense.  At an early age I developed a fascination with magic, sleight of hand to be specific. Any magician I saw perform – either on TV or live – filled me with wonder. Certainly, some of that wonder was directed toward how the trick or illusion worked, but even beyond that I wondered how I could learn to create this wonder in others. Since I was about 10, I have studied magic and about 7 years later I began performing magic shows at schools, for church groups, and even for a few holiday parties. Once I began my career as a teacher, my role as a magician changed and I focused most of my energy on teaching.  I’ve lived the life of a magician and a teacher and over the last few years, and I’ve begun to notice the similarities between the two.

A magician’s goal is to entertain his or her audience while bringing about a sense of wonder. The means for accomplishing this goal involves the use of any combination of a number of tools including misdirection, psychology, sleight of hand, and story telling. If a magician does his or her job well, the feeling of being tricked doesn’t really enter into a spectator’s mind.  The big idea here is the creation of wonder.

wonder-bwf-quote

That’s the first thing teachers can learn!  It doesn’t take a sleight of hand artist to build a sense of wonder in students.  It takes some creativity and some work and dedication to the idea that all students deserve the chance to wonder and be curious.  All students need that sense of wonder that builds inside them and creates an intellectual need to know and learn.  

This is a great time to be a teacher of mathematics.  Evoking this wonder in students in math classes is extremely accessible because of technology and the online math community know as MTBoS. There are hundreds of math teachers out there at all grade levels and in all areas who have realized the power of making students wonder.  We’ve all been creating 3-Act Tasks and sharing ideas on blogs and webpages, twitter, and youtube or vimeo.  All for free.  They’re there for everyone to use – because we’ve all learned, through using these tasks, that it helps us build student curiosity, engages them in the mathematics and in their own learning, and it helps us build independent, creative mathematical thinkers. Here is more about why you should use 3-Act Tasks.

This brings me to the second thing we can learn from magicians: we can’t do this alone! If we work together, we all benefit!  Most people probably think that magicians are private wizards who lock themselves in a room to practice and never share their secrets.  That’s a bunch of crap! Magicians realized a long time ago that if they work together, they can work more efficiently and become more productive.  Sometimes magicians work on a trick for a while, get stuck and then bring it to some friends they have in the magic community. These other magicians share their ideas, they brainstorm, and try possible solutions.  Then they test the best solution on an audience.  This can be very scary!  Think about it.  This is a trick they’ve never tried – they’ve practiced (A LOT), and maybe even performed in front of small audiences. They must be nervous!  But they go out on stage or wherever their venue is and perform it.  They have to!  It’s how they pay their bills.  Often, some of their friends who helped them are there to provide feedback.  After several performances, and feedback, the script has been adjusted and the magic has been perfected, and it becomes a part of the magician’s repertoire.

Now think about how many math teachers still work. . . alone, in their room, not sharing their ideas.  Magicians realized this was not very productive a long time ago.  Other professions did the same.  It’s time math teachers realize this too!

Take a look at the MTBoS, and see what you think.  Look at some of the sites below and see if you find something you like.  Try some ideas/lessons with your students.  It’ll be a bit scary in the beginning, but soon it’ll become part of your repertoire!  We’re all here to learn from one another because “All of us are smarter than one of us!” ~ Turtle Toms 

What I’ve learned through this whole process is that I get the same feeling of success when I create the sense of wonder in students as I did as a magician creating wonder in an audience. . . but it’s even better with students!

Why use 3-Act Tasks?

The short answer:  It’s what’s best for kids!

If you want more, read on:

The need for students to make sense of problems can be addressed through tasks like these.  The challenge for teachers is, to quote Dan Meyer, “be less helpful.”  (To clarify, being less helpful means to first allow students to generate questions they have about the picture or video they see in the first act, then give them information as they ask for it in act 2.)  Less helpful does not mean give these tasks to students blindly, without support of any kind!

This entire process will likely cause some anxiety (for all).  When jumping into 3-Act tasks for the first (second, third, . . .) time, students may not generate the suggested question.  As a matter of fact, in this task about proportions and scale, students may ask many questions that are curious questions, but have nothing to do with the mathematics you want them to investigate.  One question might be “How is that ball moving by itself?”  It’s important to record these and all other questions generated by students.  This validates students’ ideas.  Over time, students will become accustomed to the routine of 3-act tasks and come to appreciate that there are certain kinds of mathematically answerable questions – most often related to quantity or measurement.

These kinds of tasks take time, practice and patience.  When presented with options to use problems like this with students, the easy thing for teachers to do is to set them aside for any number of “reasons.”  I’ve highlighted a few common “reasons” below with my commentary (in blue):

  • This will take too long.  I have a lot of content to cover.  (Teaching students to think and reason is embedded in mathematical content at all levels – how can you not take this time)
  • They need to be taught the skills first, then maybe I’ll try it.  (An important part of learning mathematics lies in productive struggle and learning to persevere [SMP 1].  What better way to discern what students know and are able to do than with a mathematical context [problem] that lets them show you, based on the knowledge they already have – prior to any new information. To quote John Van de Walle, “Believe in kids and they will, flat out, amaze you!”)
  • My students can’t do this.  (Remember, whether you think they can or they can’t, you’re right!)  (Also, this expectation of students persevering and solving problems is in every state’s standards – and was there even before common core!)
  • I’m giving up some control.  (Yes, and this is a bit scary.  You’re empowering students to think and take charge of their learning.  So, what can you do to make this less scary?  Do what we expect students to do:  
    • Persevere.  Keep trying these  and other open problems.  Take note of what’s working and focus on it!
    • Talk with a colleague (work with a partner).  Find that critical friend at school, another school, online. . .
    • Question (use #MTBoS on Twitter, or blogs, or Google 3-act tasks).  
    • Write a comment below. 🙂

The benefits of students learning to question, persevere, problem solve, and reason mathematically far outweigh any of the reasons (read excuses) above.  The time spent up front, teaching through tasks such as these and other open problems creates a huge pay-off later on.  However, it is important to note, that the problems themselves are worth nothing without teachers setting the expectation that students:  question, persevere, problem solve, and reason mathematically on a daily basis.  Expecting these from students, and facilitating the training of how to do this consistently and with fidelity is principal to success for both students and teachers.

Yes, all of this takes time.  For most of my classes, mid to late September (we start school at the beginning of August) is when students start to become comfortable with what problem solving really is.  It’s not word problems – mostly. It’s not the problem set you do after the skill practice in the textbook.  Problem solving is what you do when you don’t know what to do!  This is difficult to teach kids and it does take time.  But it is worth it!  More on this in a future blog!

Tips:

One strategy I’ve found that really helps students generate questions is to allow them to talk to their peers about what they notice and wonder first (Act 1).  Students of all ages will be more likely to share once they have shared and tested their ideas with their peers.  This does take time.  As you do more of these types of problems, students will become familiar with the format and their comfort level may allow you to cut the amount of peer sharing time down before group sharing.

What do you do if they don’t generate the question suggested?  Well, there are several ways that this can be handled.  If students generate a similar question, use it.  Allowing students to struggle through their question and ask for information is one of the big ideas here.  Sometimes, students realize that they may need to solve a different problem before they can actually find what they want.  If students are way off, in their questions, teachers can direct students, carefully, by saying something like:  “You all have generated some interesting questions.  I’m not sure how many we can answer in this class.  Do you think there’s a question we could find that would allow us to use our knowledge of mathematics to find the answer to (insert quantity or measurement)?”  Or, if they are really struggling, you can, again carefully, say “You know, I gave this problem to a class last year (or class, period, etc) and they asked (insert something similar to the suggested question here).  What do you think about that?”  Be sure to allow students to share their thoughts.

After solving the main question, if there are other questions that have been generated by students, it’s important to allow students to investigate these as well.  Investigating these additional questions validates students’ ideas and questions and builds a trusting, collaborative learning relationship between students and the teacher.

Overall, we’re trying to help our students mathematize their world.  We’re best able to do that when we use situations that are relevant (no dog bandanas, please), engaging (create an intellectual need to know), and perplexing .  If we continue to use textbook type problems that are too helpful, uninteresting, and let’s face it, perplexing in all the wrong ways, we’re not doing what’s best for kids; we’re training them to not be curious, not think, and worst of all . . . dislike math.

More Resources like 3-Act Tasks:

 

 

 

Are Your Students Doing Mathematics?

It seems like a silly question, really.  The answer, we would expect, is “Yes, every day!” Unfortunately, I’m not sure this is the case.

For those of you about to first step foot on the exhilarating math train that is teaching mathematics, it’s probably a good idea to share a few facts and myths about learning and doing mathematics.

Myths:

  • math is equated to certainty (sadly, this belief is held by many!)
  • knowing mathematics means being able to get the correct answer – quickly (again, this belief is held by many)
  • mathematical correctness is determined through the use of a teacher or an answer key.

Facts:

  • mathematics  is a science of pattern and order (this was taken from Everybody Counts)
  • math makes sense (teachers cannot make sense of mathematics for students)
  • doing mathematics requires students to solve problems, reason, share ideas and strategies, question, model, look for patterns and structure, and yes even fail from time to time.

If you walk into a math classroom – at any level – students are doing mathematics if you see/ hear students doing the following:

Explore Construct Justify Develop
Investigate Verify Represent Describe
Conjecture Explain Formulate Use
Solve Predict Discover Discuss

If teachers are doing most of these, a shift needs to happen.  All students can do these things.  All students can learn and do mathematics.  All students can make sense of mathematics because math makes sense.

As I reread what I’ve written so far, it tends to read a bit negative.  That was not my intent.  I just wanted to point out that wherever you are in the vast range of stakeholders of math education, please be aware that just because there are students in a math class, does not mean they are necessarily doing mathematics.  That wasn’t much better!

This might be a better way to end this post:

There are many of us (more than I thought when I first started this blog) who are making the case for teaching mathematics for understanding through engaging tasks.  Dan Meyer, Andrew Stadel, Fawn Nguyen, Graham Fletcher, Jenise Sexton, and Robert Kaplinsky, just to name a few, use their blogs to share their thoughts, lessons & tasks they create, and their thoughts on what it means for students to learn and do mathematics.  These, and many others, continue to push all of us to become a better math teachers.  Personally, they strengthen my resolve, knowing that our numbers are growing along with our minds and the minds of our students!

 

Moving Decimals!?!?!?

Why are there teachers out there still teaching multiplication (and division) with decimals where the decimal is moving?

The answer to this question is simple.  It’s easy.  It doesn’t take as long to teach (though when you look at all of the time spent on remediation, I tend to disagree here).  And it takes little preparation.

Let’s take a look at this.  First:  It’s easy for teachers.  It is!  I agree.  If the teacher has this procedural understanding down, all they need is to find a set of computations (usually in the form of a worksheet with no context) Unfortunately, this procedural understanding breeds more procedural understanding and neglects the sense making necessary in learning mathematics.  Teaching  any mathematical procedures at the expense of making sense is like teaching only phonics with no connection to literature and comprehension.

By teaching moving the decimal, teachers are undoing any understanding of place value (and this is often surface understanding).  Think about it.  In first grade, students learn that when you get too many (10) popsicle sticks they need to get grouped together to make one ten.  This requires sense making on the students’ part.  The students are beginning to think of the group of ten as a unit.  The “ten” is a unit and they can work with that unit in much the same way as they work with a “one.”  In terms of place value understanding, the physical grouping and the representation on a place value chart help students make the connection between the digits and the values of those digits due the quantities of popsicle sticks (or any other material).  The digits are moved to a different place value based on the quantity.  Quantities connected to groupings connected to place value.  It makes sense to students when they experience it consistently.

  • Two popsicle sticks are represented by a digit 2 on a place value chart
  • When we get to 20 popsicle sticks (10 times as much as 2), that digit 2 that was in the ones place is now moved to the tens place.  The digits are placed based on the quantity they represent.

Flash forward to 5th grade (for example).  A student is learning to multiply decimals and the teacher is teaching procedural methods where students are told to move the decimal.  What if the student gets the incorrect product?  Do they know?  Are they aware that their computation is off?  Most likely not.  They have been taught to follow procedures (often blindly) and if they do, they’ll get the correct product.  So, when they do make an error, they are not concerned, because they’re being taught to be robots.  Follow these steps and you’ll get the right answer.  Here’s how it might sound in a classroom:

Problem on the board:  10.030 x 0.03

Teacher to student:  You made a mistake.

Student:  (answer 0.03009) But I followed the steps.

Teacher:  You made a mistake.  Please check your work.

Student:  Ok. (after a few minutes) I got the same thing.  I checked my steps.

Teacher:  Did you check your multiplication?  Maybe your error is in the facts.

Student:  Yes.  I checked the multiplication – all of my facts were correct.  I don’t know what I did wrong.

Teacher:  Let me see. (a few minutes pass) Right here.  Your decimal is in the wrong place.

Student:  But I counted the places and counted back.  Why did I get the wrong answer?

Teacher:  The answer is 0.3009.

Student:  But if you count the decimal places, the decimal should go 5 places back, not 4.

Teacher:  Hmm?  Thank you for bringing this to my attention.  I’ll take a look at it. . .

This scenario is very informative.   First, it’s obvious that no one in this situation “owns the math.”  The teacher is trying to be the owner, and in the student’s mind, it may be the case – as soon as the teacher says, “let me see.”  The student is trying to make sense (once the teacher corrects him), but can’t and doesn’t even know where to begin, due to the limiting procedural understanding in place.  Based on the “rules” the student learned, he is correct. So why is the answer incorrect?

One thing that the teacher did well is admit that he doesn’t know and that he wants to try to make sense of the situation, but that’s really just the beginning.  Students should also make sense of why the rule fails here.  Instead of blindly following rules, students should be estimating and using what they know to make sense (about 10 x 0.03 = 0.3 so my answer should be really close to 3 tenths).  This should be a part of every student’s math day.  It can’t just be told to students.  They need to experience the value of estimation through problem solving situations on a daily basis.  Over time, students adopt this valuable strategy and use it readily in multiple situations.

Learning (and teaching) mathematics is about making sense, not just procedures. There’s no better time to start than the present!